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Abstract 

The direct-methods program SA YTAN is applied to 
data at various restricted resolutions for a small 
protein. It is shown that useful sets of phases can be 
obtained even down to 3 A resolution. Conventional 
figures of merit are not very discriminating for the 
phase sets developed, but modified figures of merit 
seem capable of selecting the better phase sets, at 
least for those generated from 2 A or higher resolu- 
tion data. 

Introduction 

It was shown by Woolfson & Yao (1990) that a 
straightforward application of the direct-methods 
program S A Y T A N  could solve the protein, avian 
pancreatic polypeptide (aPP) (Glover et al., 1983). 
This protein was not only small (36 amino-acid 
peptide plus Zn plus 80 H 2 0  in the asymmetric unit, 
space group C2 with a =  34.18, b =  32.92, c =  
28.44A, /3 = 105.3 °) but also contained a fairly 
heavy atom and had data to 0.98 A resolution. The 
difficulty of solving a protein structure obviously 
becomes greater when the protein is of larger size 
and contains no heavy atoms, and when the data is 
of lower resolution. Here we examine the last of 
these conditions - that of lower resolution. In order 
to appreciate clearly the influence of changing the 
resolution, and avoid the confusion caused by differ- 
ent structures and data sets, we have used artificially 
truncated aPP data. 

Application of SA YTAN 

In all our computer experiments we started with 
pseudo-random phases generated by a magic-integer 
series (White & Woolfson, 1975). At each resolution 
1000 trials were used and, as proposed by Woolfson 
& Yao (1990), the phases of the 50 largest E's were 
kept fixed until the last cycle of refinement when they 
were allowed to relax to fit in with the other phase 
values. The version of SA YTAN which was used was 

* Present address: Indian Association for the Cultivation of 
Science, Jadavpur, Calcutta 700 032, India. 

0907-4449/93/010009-04506.00 

that for which only quartet terms corresponding to 
small E's are used (Debaerdemaeker, Tate & 
Woolfson, 1988). The use of a tangent-formula 
weighting scheme as given by Hull & Irwin (1978) 
makes the refinement quite stable. 

For resolutions lower than 2 ,~, refinement of 
initially random phase sets by SA YTAN alone does 
not give a mean phase error (MPE) less than 70 °. For 
these resolutions we found it beneficial to begin with 
five cycles of parameter-shift refinement as described 
by Debaerdemaeker & Woolfson (1983). In this 
application phases are changed one at a time by 
---45 ° and tested against minimization of the 
function 

S =  Y[E(h) - (TJQ,)ZE(k)E(h - k)[ 2 (1) 
h k 

where T,, is the sum of all the triple-phase invariants 
with the current phases and Q, is a theoretically 
derived value for the sum of all the quartets 
(Debaerdemaeker, Tate & Woolfson, 1988). The 
phase which is accepted at each step is that corre- 
sponding to the shift of + 45, 0 or - 4 5  ° which gives 
the lowest value of S. After the parameter-shift 
refinement SA YTAN is used in the normal way. 

Results 

In Table 1 we show the results of our experiments 
giving the MPE's for various resolutions. Without 
introducing the parameter-shift cycles the MPE's at 
resolution 2 A and higher were all >70 ° so the 
benefit of front-ending S A Y T A N  with parameter 
shift is evident. Maps with MPE's in the 65-70 ° 
range are sometimes adequate for the approximate 
fitting of models, although it is also possible to 
improve the maps by various methods (e.g. Wang, 
1985; Zhang & Main, 1990a,b; Shiono & Woolfson, 
1992). 

These results show that it is probably better to 
start with data of the highest possible resolution 
from the outset rather than adopt the strategy of first 
aiming for a low-resolution phase set and then enter- 
ing a phase-extension process. It is almost as much 
work to derive the 15 sets of phases at 3 A resolution 
with M P E ' s = 6 9  ° as to find the 11 sets at 1A 
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Table 1. A summary of  results in applying SA Y T A N  to aPP data at different resolutions 

N R E F  is the number  of  reflections used, E=i. is the m i n i m u m  E used, N R E L  is the number  of  l inking three-phase relationships and  M P E  is the mean  phase 
error .  

R e f i n e m e n t  
Resolut ion (A) N R E F  Emin N R E L  process Result  [ M P E  (o)] M i n i m u m  M P E  (o) 

1.0 800 1.7 9726 SA YTAN I I sets 38 
[-4o] 

1.5 650 1.4 11620 SA YTAN 29 sets 48 
[-5o] 

1.77 556 1.3 14217 SA YTAN 16 sets 54 
[-55] 

2.0 600 1.0 26323 SA YTAN 30 sets 62 
[-64] 

2.25 350 1.2 6809 Parameter shift 12 sets 63 
and SA YTAN [ - 65] 

2.5 300 i. 14 5841 Parameter shift 8 sets 68 
and SA YTAN [ - 69] 

3.0 3 i 5 0.9 9841 Parameter shift 15 sets 69 
and SA YTAN [--69] 

resolution with M P E ' s = 4 0  °. However, as was 
shown by Woolfson & Yao (1988, 1990), phase 
extension works quite well with SA YTAN,  either in 
going from low to high resolution or, alternatively, 
increasing the number of phases determined within a 
fixed resolution. 

Improved figures of merit 

In presenting their results Woolfson & Yao (1990) 
remarked that they were only able to know that they 
had obtained good phase sets for aPP because it was 
a known structure. This was actually a rather 
pessimistic statement; if the figures of merit were 
examined carefully then those corresponding to the 
best sets of phases were distinguishable but the prob- 
lem was that their values were not those usually 
associated with a good phase set. 

The first conventional figure of merit we consider 
is: 

~ a ( h ) -  ~a(h)ran 
ABSFOM = h h 

Z a 0 1 ) e x p -  Z a ( h ) r a n  ( 2 )  
h h 

where a ( h )  = I ~ k g ( k ) g ( h  -- k)l with the current 
phases and the subscripts ran and exp correspond to 
theoretical values with random phases and true 
phases respectively. For a good set of phases the 
expectation value of ABSFOM is 1.0 and for small 
structures values of 0.9-1.2 are usually found. How- 
ever, if we take the 2.0 A run for aPP it is found that 
the best phase sets, with MPE's between 62 and 64 °, 
have ABSFOM greater than 3.0 and even completely 
wrong phase sets have ABSFOM's of 2.4-2.8. The 
reason for this is not hard to find. For large struc- 
tures individual triple-phase relationships have large 
variances and while the distributions of their values 
are not random, the values of the two terms in the 
divisor of (2) may be similar; they differ by a factor 
of two for the 2/~ aPP example. Alternatively, the 
very process of refining phases with a tangent 

formula, even SA YTAN,  tends to create phase sets 
which satisfy the three-phase relationships too well - 
and in the case of proteins far too well since the 
relationships hold so poorly with correct phases. 

In order better to appreciate the significance of the 
degree of oversatisfaction of the relationships we 
have found a simpler figure of merit to substitute for 
ABSFOM which eliminates the random component. 
This is 

ABSM = Za(h)/Ya(h)exp. (3) 
h h 

This figure of merit, which should have a value of 
1.0 for correct phases, has values just over 2.2 for the 
2/~ best solutions for aPP. Although the minimum 
value of ABSM for the 1000 generated phase sets is 
1.80, nevertheless this narrow range of values does 
identify the good sets quite reliably. 

The next conventional figure of merit is that which 
depends on small E's: 

PSIZERO = F I~E(k)E(!-  k)I/F[~.IE(k)E(! - k)12] 1'2 
I k I k 

(4) 
where the summation over k is for the large E's 
whose phases are being determined while the sum- 
mation over i is for small E's. A small numerator for 
this expression indicates that Sayre's equation is 
holding for the small E's while the divisor is an 
expectation value of the numerator if random phases 
are used. A good set of phases usually has a small 
value of PSIZERO, values between about 1.0 and 1.6 
being normal. For the 2 A phase sets for aPP better 
solutions give PSIZERO somewhat less than 0.8 but 
some incorrect phase sets give 0.02 while other 
incorrect sets give about 0.9. We have found that the 
following expression gives a more discriminating 
figure of merit 

PSIM = 712E(k)E(!-  k)l/7.a(h ) (5) 
I k h 

where the summation over h is for the reflections 
being phased. The rationale here is that when the 
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Table 2. A selection of figures of merit for various phase sets generated for aPP at 1.5 A resolution 

F o r  c o m p a r i s o n  the figures o f  meri t  are also given for  phases  der ived by ca lcu la t ion  f rom the  final refined s t ruc tu re  ( indica ted  as ' t rue ' ) .  

Set n u m b e r  A B S M  PSIM R E S M  C F O M  D (°) M P E  (°) 
9 1.86 0.50 30.2 2.53 26.7 52.7 

100 1.60 0.49 34.5 1.36 33,0 81.2 
102 1.83 0.51 30.3 2.17 28.9 52.4 
130 1.35 0.53 37.2 0.12 37.1 82.5 
132 1.82 0.50 30.6 2.21 28.9 52.5 
181 1.51 0.52 36.1 0.64 35.7 84.4 
185 1.63 0.42 34.1 1.97 34.9 80.0 
186 1.84 0.50 30.0 2.32 29.2 52.0 
200 1.57 0.52 34.8 0.98 34.6 79.5 
201 1.49 0.55 36.9 0.32 32.8 81.6 
255 1.85 0.51 31.0 2.13 27.0 51.7 

True 1.64 0.41 18.8 35.5 

values of a(h) are large then it is normally found that 
a pattern of phases is established which tends to give 
a larger value for the numerator of (5). By looking 
for smaller values of PSIM we are discriminating 
against small values of the numerator which arise 
just because the phases are fairly random and the 
divisor is small. It must be said that this argument is 
based on experience gained over many years of 
developing direct methods and cannot be justified 
analytically but the experience does seem to point in 
the right direction in this case. 

The better phase sets tend to have lower values of 
PSIM although, as will be seen from Table 2, this is 
not universally true. Once again, although the values 
found for the new figure of merit are somewhat 
constrained they do help to indicate correctly the 
better phase sets. 

The final conventional figure of merit is 

Ela(h)- a(h)cxp] 
RESID--  h X 100 (6) 

Ea(h)exp 
h 

which depends on how well individual values of a 
agree with their expectation values. Because the 
values of a(h) derived from SAYTAN are much 
larger than their theoretical expected values very 
large values of RESID are found - for example, 
greater than 100 for the better phase sets and 
between 80 and 140 in general. We have compen- 
sated for the abnormally large values of a(h) by 
using 

RESM = z l a ~ h ) a ( h ) e x P  x 100 Sexp (7) 

instead of RESID. Here s = Y ha(h) and S~xp is the 
expected value of s with true phases. 

The values of RESM are not scaled to give an 
expectation value valid for all structures but, for the 
2 A phase sets we are considering here, the values 
vary between 44.9 and 51.7 with better phase sets 
having values from 44.9 to 45.3. 

Another figure of merit which was computed 
(although not used in the automatic selection of the 

better phase sets) was 

D = (min(]~3.;], 1180 - ~)3,il))i (8) 

where q03,i is the value in degrees of the ith three- 
phase invariant, which was given by Woolfson & 
Yao (1990) to distinguish sets of phases which give 
enantiomorph discrimination. The average is over 
the values of all the three-phase invariants; if its 
value is small then the invariants are all close to 0 or 
77" and the enantiomorph will be poorly indicated. As 
a rule of thumb any value of D over 15 ° represents 
satisfactory enantiomorph discrimination. 

A selection of results for 1.5 A, including some 
better solutions, is shown in Table 2. The combined 
figure of merit CFOM is defined in the usual 
MULTAN and SA YTAN way 

ABSM - (ABSM)min 
CFOM = wl (ABSM)max - (ABSM)mi, 

(PSIM)max- PSIM 

+ W2 (PSlM)max -- (PSlM)min 

(RESM)max- RESM 
+ w3 (RESM)max- (RESM)min (9) 

where the subscripts max and min correspond to the 
maximum and minimum values for the 1000 phase 
sets and the weights are set at w~ = w2 = w3 = 1.0. A 
phase set with the best value for all three figures of 
merit would have CFOM = 3.0. 

We also show in Table 3 some extracts from 
results obtained at 2 and 2.25 A; for 2 A the values 
of CFOM close to 2.0 indicate several sets with mean 
phase errors between 61 and 63 °. The values of D for 
these sets are all close to 20 ° indicating that the map 
should show good enantiomorph discrimination. For 
2.25 A resolution the value of CFOM does not 
clearly show the better solutions and, indeed, the 
highest value of CFOM is for a set of phases with a 
high MPE. It appears that the value of ABSM alone 
could pick up the best phase sets in this case, sug- 
gesting that a different weighting scheme for combin- 
ing FOM's  should have been used. 
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Table 3. A selection of figures of merit for various phase sets generated for aPP at 2.0 and 2.25 A resolution 

The values with 'true' phases (see Table 2) are also given. 

Set number ABSM PSIM RESM CFOM MPE (°) D (°) 
2 A  
502 2.08 0.39 49.4 1.99 61.4 20.1 
505 0.25 0.16 79.9 0.98 83.9 14.3 
506 2.09 0.39 49.3 2.01 62.8 19.2 
510 2.08 0.39 49.1 1.99 62.5 20. I 
549 2.09 0.40 48.9 1.99 63.0 20.4 
600 0.3 ! 0.23 72.7 0.94 84.2 9.5 
601 0.34 0.16 54.6 1.86 80.2 14.7 
609 2.08 0.38 49.2 1.99 62.6 20.1 
700 2.09 0.38 48.7 1.99 61.7 20.4 
754 2.08 0.38 49.4 2.00 61.8 19.3 

True 1.44 0.31 29.6 42. I 

2.25 A 
150 0.36 0.25 42.6 1.45 81.8 14.0 
152 0.36 0.23 46.1 1.08 79.8 16.8 
! 55 0.38 0.26 40.5 1.68 81.3 14.8 
159 2.02 0.46 42.1 1.78 62.7 21.3 
525 0.32 0.30 47.9 0.56 84.9 14.8 
600 0.39 0.17 45.1 1.41 83.2 19.8 
715 0.42 0.17 44.3 1.54 83.8 17.0 
811 0.48 0.20 41.3 !.89 83.2 15.1 
819 1.98 0.44 42.6 1.8 i 65.4 21.0 
900 0.40 0.20 43.5 1.53 83.8 18.9 

True 1.76 0.33 34.2 43.0 

Concluding remarks 

We have shown that by a judicious choice of figures 
of merit it is possible to develop and recognize phase 
sets with acceptable phase errors for a small protein 
structure at moderate resolutions. While we have 
demonstrated this down to 2 A resolution it must be 
said that recognizing better phase sets for lower 
resolution has eluded us. This is a very stringent limit 
on the applicability of this kind of direct method as 
man), proteins give data limited in resolution to 
2.5 A or even lower. 

We are beginning experiments on the second 
limiting factor, the size of the structure, and we hope 
to report on this work in due course. However, one 
thing is already clear: conventional direct methods 
which operate with the MULTAN/SA YTAN 
philosophy have only a very limited contribution to 
make to protein crystallography and new ideas, per- 
haps coupled to the use of real-space methods and 
physical data such as that from anomalous scat- 
tering, are needed to make further progress. 

We express our gratitude to the Science and 
Engineering Research Council who supported this 
work. Our thanks are also due to Drs Yao Jia-xing, 
C. Tate and L. Refaat for their help and advice. 
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